A simple method for improving local binary patterns by considering non-uniform patterns

نویسندگان

  • Loris Nanni
  • Sheryl Brahnam
  • Alessandra Lumini
چکیده

The basic idea behind LBP is that an image is composed of micropatterns. A histogram of these micropatterns contains information about the local features in an image. These micropatterns can be divided into two types: uniform and non-uniform. In standard applications using LBP, only the uniform patterns are used. The non-uniform patterns are considered in only a single bin of the histogram that is used to extract features in the classification stage. Non-uniform patterns have undesirable characteristics: they are of a high dimension, partially correlated, and introduce unwanted noise. To offset these disadvantages, we explore using random subspace, well-known to work well with noise and correlated features, to train features based also on non-uniform patterns. We find that a stand-alone support vector machine performs best with the uniform patterns and random subspace with histograms of 50 bins performs best with the non-uniform patterns. Superior results are obtained when the two are combined. Based on extensive experiments conducted in several domains using several benchmark databases, it is our conclusion that non-uniform patterns improve classifier performance. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Rotation Invariance of the Volume Local Binary Pattern Operator

Dynamic texture is an extension of texture to the temporal domain. Recently, a powerful method for dynamic texture recognition based on volume local binary patterns (VLBP) was proposed. In this paper, we investigate improvements of the original VLBP operator. A proof on the relation of the two rotation invariant VLBP patterns is given. Methods for obtaining rotation invariance are experimentall...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Face Recognition in Uncontrolled Environment

This paper presents a novel method of facial image representation for face recognition in uncontrolled environment. It is named as augmented local binary patterns (A-LBP) that works on both, uniform and non-uniform patterns. It replaces the central non-uniform pattern with a majority value of the neighbouring uniform patterns obtained after processing all neighbouring non-uniform patterns. Thes...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012